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Gradient Descent

• Find a local minimizer of a function f(x)

Theorem (First-Order Necessary Conditions)

If x∗ is a local minimizer and f is continuously differentiable in an open
neighborhood of x∗, then ∇f(x∗) = 0.

Nocedal J, Wright S. Numerical optimization[M]. Springer Science & Business Media, 2006. Chapter 2
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Gradient Descent

Algorithm 1 Gradient Descent

Require: Startint point x0

Require: Step length γt
1: Compute negative gradient direction

pt = −∇f(xt)

2: Move one step
xt+1 = xt + γtpt

3: Loop line 1 and 2 until pt ≈ 0
4: return xt

Jianwei Zhang (ZJU CS) Optimizers in Machine Learning June 24, 2019 4 / 42



Gradient Descent

Machine Learning Model

• Model parameter θ

• Dataset {zi|i = 1, 2, · · · , n}
• Empirical error f(zi|θ), and f is differentiable

• Goal

θ∗ = min
θ

1

n

n∑
i=1

f(zi|θ)
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Gradient Descent

Algorithm 2 Gradient Descent in ML

Require: Initial parameters θ
Require: Learning rate γt

1: Compute negative gradient direction

pt = − 1

n

n∑
i=1

∇θf(zi|θ) (1)

2: Update parameters
θ ← θ + γtpt

3: Loop line 1 and 2 until pt ≈ 0
4: return θ
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Stochastic Gradient Descent

• It is hard to compute gradients of the empirical error in (1) when we have a
large-scale dataset. So we have stochastic gradient descent:
• Estimate empirical error En(fθ) by a single randomly picked example zt at

step t at each iteration:

θ ← θ − γt∇θf(zt|θ) (2)

• The stochastic process {θt, t = 1, 2, · · · } depends on the examples randomly
picked at each iteration.

• It is hoped that (2) behaves like its expectation (1) despite the noise
introduced by this approximation.

• Convergence results usually require decreasing learning rate satisfying the
conditions

∑
t γ

2
t <∞ and

∑
t γt =∞.

Bottou L. Large-scale machine learning with stochastic gradient descent[M]//Proceedings of COMPSTAT’2010. Physica-Verlag HD, 2010: 177-186.
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Average Stochastic Gradient Descent

• Average Stochastic Gradient Descent (ASGD) performs Normal SGD
update and recursively computes the average θt = 1

t

∑t
i=1 θi:

θt+1 = θt − γt∇θf(zt|θ), (3)

θt+1 =
t

t+ 1
θt +

1

t+ 1
θt+1. (4)

Notice that θ is the desired parameter. Generally, ASGD might need a large
amount of data to converge.

• A proper learning rate schedule used in ASGD:

γt = γ0(1 + aγ0t)
c,

with which we can takes a reasonable amount of data to reach its asymptotic
region.

Boris T. Polyak and Anatoli. B. Juditsky. Acceleration of stochastic approximation by averaging. Automation and Remote Control, 30(4):838–855, 1992.
Xu W. Towards optimal one pass large scale learning with averaged stochastic gradient descent[J]. arXiv preprint arXiv:1107.2490, 2011.
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Batch Stochastic Gradient Descent

• Batch SGD is a compromise for estimating gradients.

Optimizer Use data Gradients

GD all data 1
n

∑n
i=1∇f(zi)

SGD single data per step ∇f(zt)

Batch SGD a batch of data 1
m

∑m
i=1∇f(zi), m < n

Mini-Batch SGD a mini-batch of data 1
m

∑m
i=1∇f(zi), m� n

Table: GD and variants
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Batch Stochastic Gradient Descent

• Although batch GD has better performance in the figure below, a huge
amount of non-convex functions will make (large) batch GD perform poorly.
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Influence on learning rate

learning rate 0.0005

learning rate 0.003

learning rate 0.004

learning rate 0.005

Figure: Why Momentum Really Works (https://distill.pub/2017/momentum/)
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Challenges in SGD

• Choose a proper learning rate is difficult.

• One learning rate schedule is unable to adapt to various datasets.

• Applying the same learning rate to all the parameters may not be the best.

• Object function is highly non-convex for neural networks, which means lost of
local minima.

• Second-order optimization methods such as Newton’s method are not
suitable for deep learning. Because Hessian matrix is hard to compute.

Ruder S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv:1609.04747, 2016.
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Exponentially Weighted Average

• Samples from cosine function with Gaussian noise
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Exponentially Weighted Average

• We want some kind of ’moving’ average which would ’denoise’ the data and
bring it closer to original function.

• Exponentially weighted averages define a new sequence
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Exponentially Weighted Average

• Exponentially weighted average formula:

mt = βmt−1 + (1− β)m̂t, (5)

where {mt, t = 1, 2, · · · } is a new moving-averaged sequence.

• Larger β will give smoother sequences but cause more seriously ’decay’.
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SGD with Momentum

• SGD has trouble navigating ravines(narrow valley), i.e. areas where the
surface curves much more steeply in one dimension than in another, which
are common around local optima.

• The system will oscillate back and forth in the direction of short axis and
move very slowly along the long axis of the valley.

• How to accelerate SGD? Momentum!

Figure: SGD without momentum, learning rate 0.003

Figure: Why Momentum Really Works (https://distill.pub/2017/momentum/)
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SGD with Momentum

• Recall exponentially weighted average:

mt = βmt−1 + (1− β)m̂t.

• Remove 1− β and let m̂t = γ∇θf(θt). Then we get

Momentum SGD

mt = βmt−1 + γ∇θf(θt), 0 < β < 1 (6)

θt+1 = θt −mt (7)

• Usually momentum parameter β is set to 0.9 or 0.99 that is close to 1.
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SGD with Momentum

• The modification of the parameters θ at the current times step depends on
both the current gradient ∇θf(θt) and the parameters change mt of the
previous step.

Figure: SGD with momentum 0.85, learning rate 0.003

Qian N. On the momentum term in gradient descent learning algorithms[J]. Neural networks, 1999, 12(1): 145-151.
Figure: Why Momentum Really Works (https://distill.pub/2017/momentum/)
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Nesterov Accelerated Gradient

• We will use momentum term βmt to move parameter
θ. So computing a ”look-ahead” θ − βmt will give us
an approximation of the next position of the
parameters, which we can use to estimate gradients.

Yurii Nesterov

• We slightly adjust the formulas of Momentum SGD to get NAG:

Nesterov accelerated gradient (NAG)

mt = βmt−1 + γ∇θf(θt − βmt−1), 0 < β < 1 (8)

θt+1 = θt −mt (9)

Nesterov Y. A method for unconstrained convex minimization problem with the rate of convergence O (1/k2)[C]//Doklady AN USSR. 1983, 269: 543-547.
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Nesterov Accelerated Gradient

Figure: Momentum vs. Nesterov momentum

CS231n Convolutional Neural Networks for Visual Recognition(http://cs231n.github.io/neural-networks-3/#sgd)
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AdaGrad

• Adaptive gradient (AdaGrad) adapts the learning rate to the parameters,
performing larger updates for infrequent and smaller updates for frequent
parameters.

Adaptive gradient (AdaGrad)

θt+1 = θt −
γ√

Gt + ε
�∇θf(θt), (10)

where � is element-wise product, ε is a small number to prevent dividing
by zero and Gt ∈ Rd×d is a diagonal matrix where each diagonal element
(i, i) is the sum of the squares of the gradients w.r.t. θ(i) up to time step
t:

G
(i,i)
t =

t∑
τ=1

∇θf(θτ )2

Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011,
12(Jul): 2121-2159.
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AdaGrad

• Advantages
• It is well suited for sparse data.
• It basically eliminates the need to tune the learning rate.

• Disadvantages
• It is sensitive to the initial gradients. Large initial gradients result in lower

learning rate and make training slower.
• Due to the continual accumulation of squared gradients in the denominator,

the learning rate will continue to decrease throughout training, eventually
decreasing to zero and stop training.

Ruder S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv:1609.04747, 2016.
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AdaDelta

• AdaDelta is an extension of AdaGrad for reducing its aggressive,
monotonically decreasing learning rate. A natural idea is to restrict the
accumulation window of the squared gradients. However, instead of storing a
series of gradients which is not an efficient choice, AdaDelta use a
exponentially weighted average(E) of the square gradients:

E[∇θf(θ)2]t = ρE[∇θf(θ)2]t−1 + (1− ρ)∇θf(θt)
2. (11)

• Denote RMS[∇θf(θ)]t (Root Mean Square) the square root of E:

RMS[∇θf(θ)]t =
√

E[∇θf(θ)2]t + ε. (12)

• But actually RMS represents Root Exponentially Weighted Average Square
here.

Zeiler, Matthew D. 2012. “ADADELTA: An Adaptive Learning Rate Method.” ArXiv:1212.5701 [Cs], December. http://arxiv.org/abs/1212.5701.
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AdaDelta

• Then we get parameter update:

AdaDelta (Primary)

θt+1 = θt −
γ

RMS[∇θf(θ)]t
�∇θf(θt), (13)

• Notice that if the optimization problem(such as a physical problem) has some
hypothetical units, then the update formula above will lead to wrong
units(comparing to SGD, here exists an extra unit of gradients in
denominator). So as to AdaGrad.
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AdaDelta

• Considering the units of SGD:

units of ∆θ ∝ units of ∇θf(θ) ∝ ∂f

∂θ
∝ 1

units of θ
, (14)

assuming the cost function f is unitless.
• The SGD method will result in wrong units, while the second order methods

such as Newton’s method using Hessian information H do have the correct
units for the parameter update:

∆θ ∝ H−1∇θf(θ) ∝
∂f
∂θ
∂2f
∂θ2

∝ units of θ . (15)

• We rearrange Newton’s method(assuming a diagonal Hessian) for the inverse
of the second derivative to determine the quantities involved:

∆θ =
∂f
∂θ
∂2f
∂θ2

⇒ 1
∂2f
∂θ2

=
∆θ
∂f
∂θ

. (16)
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AdaDelta

• Use equation(13) and boxed part of (14),(15), we can know that unit of ∆θ
∂f
∂θ

in equation (16) is correct. So after applying some transformation, ∆θ
∂f
∂θ

will

be a proper substitute of γ
RMS[∇θf(θ)]t

.

• In denominator, ∂f
∂θ is related to RMS[∇θf(θ)]t, so in numerator, we can

similarly replace γ with RMS[∆θ]t. But we still do not have ∆θt, so we use
a delayed version RMS[∆θ]t−1.

• Finally we have final AdaDelta algorithm

AdaDelta (Final)

θt+1 = θt −
RMS[∆θ]t−1

RMS[∇θf(θ)]t
�∇θf(θt), (17)
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AdaDelta

Algorithm 3 AdaDelta

Require: Decay rate ρ, Constant ε

Require: Initial parameter θ0

1: Initialize accumulation variables E[∇θf(θ)2]0 = 0,E[∆θ2]0 = 0

2: for t = 1 : T Loop over # of updates do

3: Compute Gradiet: ∇θf(θt)

4: Accumulate Gradient: E[∇θf(θ)2]t = ρE[∇θf(θ)2]t−1 + (1− ρ)∇θf(θt)
2

5: Compute Update: (∆θ)2
t = − RMS[∆θ]t−1

RMS[∇θf(θ)]t
∇θf(θt)

6: Accumulate Updates: E[(∆θ)2]t = ρE[(∆θ)2]t−1 + (1− ρ)(∆θt)
2

7: Apply Update: θt+1 = θt + ∆θt

8: end for
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RMSProp

• RMSProp, proposed by Geoffery Hinton, is just the primary version of
AdaDelta.

RMSProp

θt+1 = θt −
γ

RMS[∇θf(θ)]t
�∇θf(θt), (18)

• A typical choice of ρ in RMSProp is 0.9.

http://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture slides lec6.pdf
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Adaptive Momentum, Adam

• Inspired by AdaDelta storing exponentially weighted average of previous
squared gradients(denote mt), Adaptive Momentum(Adam) Estimation
also keeps an exponentially weighted average of previous gradients(denote
vt), similar to momentum:

mt = β1mt−1 + (1− β1)∇θf(θt) (19)

vt = β2vt−1 + (1− β2)∇θf(θt)
2 (20)

where mt and vt can also be regarded as the first moment(the mean) and
the second moment(the uncentered variance) of the gradients, respectively.

• β1 and β2 are close to 1 just like Momentum, and RMSProp.

• Notice that if we initialize m0 = 0 and v0 = 0, then the gradients are biased
towards zero, especially in initial steps.

Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.” ArXiv:1412.6980 [Cs], December.
http://arxiv.org/abs/1412.6980.
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Adaptive Momentum, Adam

• We need the algorithm have larger moments at the beginning of training to
counteract the biases mentioned above:

m̂t =
mt

1− βt1
, (21)

v̂t =
vt

1− βt2
. (22)

And we give a brief derivation of equation (21) and (22) in next slide.

• Finally we get Adam update rule:

θt+1 = θt −
γ√

v̂t + ε
m̂t. (23)

Jianwei Zhang (ZJU CS) Optimizers in Machine Learning June 24, 2019 34 / 42



Proof of Bias-Correction*

• Let g = ∇θf(θ). For the exponentially weighted average, we have

vt = β2vt−1 + (1− β2)g2
t = (1− β2)

t∑
i=1

βt−i2 g2. (24)

We wish to know how E[vt], the expected value of the exponentially
weighted average at timestep t, relates to the true second order moment
E[g2

t ], so we can correct for the discrepancy between the two. Taking
expectations of equation (24):

E[vt] = E

[
(1− β2)

t∑
i=1

βt−i2 g2
i

]

= E[g2
t ] · (1− β2)

t∑
i=1

βt−i2 + ζ

= E[g2
t ] · (1− βt2) + ζ (25)

where ζ = 0 if E[g2
i ] is stationary; otherwise just choice β2 to make ζ close

to zero.
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Adaptive Momentum, Adam

• Adam = Momentum︸ ︷︷ ︸
Weighted Average Gradients

⊕ RMSProp︸ ︷︷ ︸
Adaptive Learning Rate

⊕ InitialAdjustment.

• We display complete Adam routine here:

Adam

γt = γ

√
1− βt2

1− βt1
(26)

mt = β1mt−1 + (1− β1)∇θf(θt) (27)

vt = β2vt−1 + (1− β2)∇θf(θt)
2 (28)

θt+1 = θt −
γt√
vt + ε

�mt. (29)

• The authors propose default values β1 = 0.9, β2 = 0.999 and ε = 10−8.
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Adaptive Momentum, Adam

Figure: Adjusted learning rate (i.e. equation (26)) at beginning 5000 steps
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AdaMax

• AdaMax generalize the L2 norm of gradients of Adam in equation (28) to p
norm Lp.

• With some slight modification, we have

vt = βp2vt−1 + (1− βp2)‖gt‖p

= (1− βp2)

t∑
i=1

β
p(t−i)
2 · ‖gi‖p. (30)

Note that we replace β2 with βp2 .

Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.” ArXiv:1412.6980 [Cs], December.
http://arxiv.org/abs/1412.6980.
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AdaMax

• Let p→∞, then:

ut := lim
p→∞

(vt)
1/p = lim

p→∞

(
(1− βp2)

t∑
i=1

β
p(t−i)
2 · ‖gi‖p

)1/p

= lim
p→∞

(1− βp2)1/p

(
t∑
i=1

β
p(t−i)
2 · ‖gi‖p

)1/p

= lim
p→∞

(
t∑
i=1

(
βt−i2 · ‖gi‖

)p)1/p

= max(βt−1
2 ‖g1‖, βt−2

2 ‖g2‖, · · · , β2‖gt−1‖, ‖gt‖). (31)

which can be write into a recursive formula:

ut = max(β2 · ut−1, ‖gt‖) (32)

with initial value u0 = 0.
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AdaMax

• Now we have AdaMax algorithm

AdaMax

mt = β1mt−1 + (1− β1)∇θf(θt) (33)

ut = max(β2 · ut−1, ‖∇θf(θ)t‖) (34)

θt+1 = θt −
γ

(1− βt1)(ut + ε)
�mt. (35)
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Nesterov Adaptive Momeuntum, NAdam

• We know that Adam ≈ Momentum ⊕ RMSProp and Nesterov is an
improved version of Momentum. So we can replace Momentum with a
modified version of Nesterov in Adam and get Nesterov Adam(NAdam).

• For Momentum update rule we can put them into one line:

θt+1 = θt − (βmt−1 + γ∇θf(θt)). (36)

• And for Nesterov update rule:

θt+1 = θt − (βmt−1 + γ∇θf(θt − βmt−1)). (37)

• In NAdam, we replace mt−1 in Momentum with mt directly, which can be
viewed as a weighted momentum:

θt+1 = θt − (β2mt−1 + (β + 1)γ∇θf(θt)). (38)

Dozat, Timothy. 2016. “Incorporating Nesterov Momentum into Adam.”
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Nesterov Adaptive Momeuntum, NAdam

• We can formalize Adam to a single line:

θt+1 = θt −
γt√
vt + ε

� (β1mt−1 + (1− β1)∇θf(θt)) (39)

Replace mt−1 with mt and we get NAdam

NAdam

γt = γ

√
1− βt2

1− βt1
(40)

m̃t = β1mt + (1− β1)∇θf(θt) (41)

vt = β2vt−1 + (1− β2)∇θf(θt)
2 (42)

θt+1 = θt −
γt√
vt + ε

� m̃t. (43)
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Thank You!

Jianwei Zhang (ZJU CS) Optimizers in Machine Learning June 24, 2019 43 / 42


	Outline
	Gradient Descent
	Stochastic Gradient Descent
	SGD
	Average SGD
	Batch SGD
	Challenges

	Momentum and Nesterov
	Exponentially Weighted Average
	Momentum SGD
	Nesterov SGD

	Adaptive Learning Rate
	AdaGrad
	AdaDelta
	RMSProp

	Adaptive Momentum
	Adam
	AdaMax
	NAdam


